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A detailed investigation of fully developed transient flow in a pipe has been undertaken
using water as the working fluid. Linearly increasing or decreasing excursions of
flow rate were imposed between steady initial and final values. A three-beam, two-
component laser Doppler anemometer was used to make simultaneous measurements
of either axial and radial, or axial and circumferential, components of local velocity.
Values of ensemble-averaged mean velocity, root-mean-square velocity fluctuation
and turbulent shear stress were found from the measurements.

Being the first really detailed study of ramp-type transient turbulent flow, the
present investigation has yielded new information and valuable insight into certain
fundamental aspects of turbulence dynamics. Some striking features are evident in
the response of the turbulence field to the imposed excursions of flow rate. Three
different delays have been identified: a delay in the response of turbulence produc-
tion; a delay in turbulence energy redistribution among its three components; and
a delay associated with the propagation of turbulence radially. The last of these is
the most pronounced under the conditions of the present study. A dimensionless
delay parameter τ+[=

√
2τUτ0/D] is proposed to describe it. The first response of

turbulence is found to occur in the region near the wall where turbulence production
peaks. The axial component of turbulence responds earlier than the other two com-
ponents and builds up faster. The response propagates towards the centre of the pipe
through the action of turbulent diffusion at a speed which depends on the Reynolds
number at the start of the excursion. In the core region, the three components of
turbulence energy respond in a similar manner. Turbulence intensity is reduced in
the case of accelerating flow and increased in decelerating flow. This is mainly as a
result of the delayed response of turbulence. A dimensionless ramp rate parameter
γ[= (dUb/dt)(1/Ub0)(D/Uτ0)] is proposed, which determines the extent to which the
turbulence energy differs from that of pseudo-steady flow as a result of the delay in
the propagation of turbulence.

1. Introduction
1.1. General

Apart from being of practical importance in connection with various engineering
applications, the study of unsteady turbulent pipe flow is of value in providing
information which can lead to an improved understanding of the phenomenon of
turbulence. In such flows certain fundamental aspects of turbulent flow are exposed,
which although present in steady turbulent flows are not apparent under such condi-
tions. In addition, due to the effect of inertia, some additional features of turbulence
specific to transient flows can be present. Due to the severe technical difficulties
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involved, really detailed measurements of turbulence in transient flow were not pos-
sible until quite recently. As a result of the availability of modern instrumentation
and powerful computers, transient turbulent flow can now be readily investigated.
Accordingly, such flows have begun to receive more extensive study.

1.2. Periodic pulsating flows

Unsteady turbulent pipe flows can be conveniently classified into two groups, namely
periodic pulsating flows and non-periodic transient flows. Pulsating turbulent pipe
flow has received particular attention because of its practical importance and the
ease with which it can be generated. Studies of this type of flow include those of
Mizushina, Maruyama & Shiozaki (1973) and Mizushina, Maruyama & Hirasawa
(1975), who used an electrochemical method, Shemer & Wygnanski (1981), Shemer &
Kit (1984), Shemer, Wygnanski & Kit (1985), and Burnel, Raelison & Thomas (1990,
1991), who used hot wires, and Ramaprian & Tu (1980, 1983) and Tardu, Binder &
Blackwelder (1994), who used single-component laser Doppler anemometry (LDA)
systems. The fundamental variables involved in pulsating pipe flow are the amplitude
and frequency of the imposed unsteadiness and the mean flow rate. In the studies
mentioned, it has been found that whereas the effects on the velocity and turbulence
fields of frequency of the oscillation and mean flow-rate can be significant, the effect
of amplitude is small.

In addition to the Stokes number D
√
ω/8ν, where D is pipe diameter, ω is radian

frequency and ν is kinematic viscosity, which has been widely used in the case of
laminar flows, a number of other non-dimensional similarity parameters have been
suggested for use in the case of pulsating pipe flow. Ramaprian & Tu (1983) used
ωD/Uτ, where Uτ is friction velocity, when considering turbulent diffusion. Using this
parameter and the Reynolds number based on mean flow rate, they classified pulsating
turbulent pipe flow into five regimes. The Stokes–Reynolds number, l+s = lsUτ/ν (in

which ls =
√

2ν/ω is the thickness of the viscous Stokes layer), was used by Binder
& Kueny (1981), Binder et al. (1985) and Tardu et al. (1994). This parameter provides
a measure of how far the viscous Stokes layer extends into the inner region of a
turbulent flow. The parameter ω+(= ων/U2

τ ) used by Mao & Hanratty (1986) is
directly related to the Stokes–Reynolds number through ω+ = 2/l+2

s . It will be seen
later in the present paper that the diffusion of turbulence and the spread of the viscous
Stokes layer are both important features of non-periodic transient turbulent flow.

In addition to the various experimental studies, computational modelling has been
attempted by a number of researchers. The simplest turbulence model used involved
prescribed distributions of eddy viscosity, see for instance Ohmi et al. (1976), Ohmi,
Kyomen & Usui (1978), Kita, Adachi & Hirose (1980) and Shemer & Wygnanski
(1981). A variety of one-equation turbulence models have been tried (Murphy &
Prenter 1981; Cook, Murphy & Owen 1985; Ramaprian & Tu 1983 and Kirmse
1979) and also some two-equation models (Cousteix, Javelle & Houdeville 1981;
Blondeaux & Colombini 1985). The resulting simulations have generally been found
to be in poor agreement with experiment. However, recent investigations by the
present authors and colleagues, using a number of low-Reynolds-number k–ε models
such as that of Launder & Sharma (1975), have met with more success (see, for
instance, Cotton & Ismael 1991).

1.3. Non-periodic turbulent flows

In contrast to pulsating pipe flow, non-periodic transient pipe flow has received
relatively little attention. The few studies of this kind undertaken so far have involved
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a variety of types of imposed excursions of flow rate. An early investigation by
Kataoka, Kawabata & Miki (1975) studied the start-up response to a step input of
flow rate in a pipe using an electrochemical technique. The time at which transition
from laminar to turbulent flow occurred was found to decrease with increase of
the Reynolds number of the imposed flow. The study of Maruyama, Kuribayashi
& Mizushina (1976) was concerned with transient turbulent pipe flow following a
stepwise increase of flow rate from an initial steady turbulent flow condition. Delays
were observed in the response of turbulence, which were found to be greater at the
centre of the pipe than close to the wall.

Kurokawa & Morikawa (1986) studied flow transients with gradually increasing
and decreasing flow rate in a pipe. Their study showed that the transition Reynolds
number increased with ramp rate and that, even for a very small imposed acceleration,
transition from laminar to turbulent flow was significantly postponed. In the case of
laminar flow, the friction coefficient was found to be greater than the corresponding
value for quasi-steady flow. In contrast, it was found to be smaller under conditions
of turbulent flow.

The experimental study of Lefebvre (1987) was concerned with accelerating flow in a
pipe. The experimental facility was equipped with advanced instrumentation, including
a two-component LDA system and six flush-mounted hot-film sensors. Unfortunately,
the measurements of turbulence reported were rather limited. Discussion was mainly
concentrated on transition from laminar to turbulent flow based on results from
single excursions. However, some ensemble-averaged information obtained from 20
repeated runs was also presented. The mean velocity profiles and turbulent intensity
profiles both generally exhibited a quasi-steady variation, although a reduction in
turbulence intensity was clearly evident at the beginning of some of the transients.

1.4. Spatially accelerating and decelerating flows

It is appropriate at this point to consider transient turbulent flow in relation to
another type of non-equilibrium flow, namely spatially accelerating or decelerating
flow. Comparisons can be made between the two with the aid of the concept of an
equivalent convection velocity and, when this is done, it is found that they share some
common features.

Early studies of turbulent boundary layers with streamwise pressure gradients
include those of Kline et al. (1969), Patel & Head (1968), Narayanan & Ramjee (1969)
and Blackwelder & Kovasznay (1972). It was found that turbulence was enhanced
where the flow was decelerating. Under such conditions bursts of turbulence were
more frequent and violent. In contrast, when the flow was accelerating, turbulence
was generally attenuated and the bursting frequency was reduced. When the flow was
accelerated sufficiently, the bursting process ceased, and reverse transition (sometimes
referred to as relaminarization) occurred.

More recently, very comprehensive studies have been conducted on boundary layers
subjected to favourable and adverse pressure gradients, in some cases coupled with
streamwise curvature. These have yielded measurements of higher-moment turbulence
quantities. Examples include Muck, Hoffmann & Bradshaw (1985), Baskaran, Smits
& Joubert (1987), Webster, Degraaff & Eaton (1996) and Schwarz & Plesniek (1996).
While convex curvature has been found to have an effect similar to that of flow
acceleration, stabilizing the flow and attenuating turbulence, concave curvature has
the opposite effect. Some of the features of such flows have been related by the
investigators to the propagation of turbulence structures from the wall outwards.

Experimental studies of internal flows with spatial acceleration or deceleration have
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been reported by Tanaka & Yabuki (1986), Sano & Asako (1993) and Spencer, Heitor
& Castro (1993). Again turbulence has been found to be attenuated when the flow is
accelerating and enhanced when it is decelerating.

1.5. The present study

Although much effort has been put into the study of unsteady turbulent flow, the
understanding of turbulence under such conditions is far from complete. With the
exception of the studies conducted by Shemer et al. (1985), who used a rake of nine hot
wires, and Burnel et al. (1990, 1991), who used crossed hot-film probes, the majority of
experimental studies of transient flow have involved only single-velocity-component
measurements. Furthermore, attention has been concentrated mainly on the pulsating
flow case, the emphasis being on using Fourier analysis to extract information about
the phase angle and amplitude of the responses of the mean flow and turbulence.

The present study was undertaken with a view to adding to the information
available on non-periodic accelerating and decelerating ramp-type flows. A test facility
was designed to enable ramp-type excursions of flow rate to be imposed in a long
pipe. The flow rate could be caused to increase or decrease linearly with time from an
initial steady value to a new one during a prescribed period. A two-component laser
Doppler anemometer system was used which enabled simultaneous measurements of
axial and radial or axial and circumferential components of velocity to be made. The
experimental arrangement was such that highly repeatable excursions of flow rate
could be imposed, thus enabling reliable ensemble-averaged results to be obtained.
In this paper, experimental results are presented which not only show how mean
flow and turbulence respond to imposed transients but also provide new insight into
turbulence dynamics.

1.6. Similarity and scaling

Representing the governing equations, initial conditions and boundary conditions
in dimensionless form, three dimensionless groups emerge for the problem under
consideration here as parameters which control similarity and enable scaling cal-
culations to be made. These are the initial Reynolds number Re0(= Ub0D/ν), the
final Reynolds number Re1(= Ub1D/ν) and a dimensionless ramp rate parameter,
α[(= D3/ν2)(dUb/dt)], where Ub0 and Ub1 are respectively the initial and final bulk
velocity. The velocity and turbulence fields at the start of the excursion and their
initial response to an imposed excursion of flow rate are determined by the value of
the initial Reynolds number. The value of the ramp rate parameter determines the
extent to which the velocity and turbulence fields depart from those of pseudo-steady
flow as a result of the imposed excursion of flow rate. The final Reynolds number is
only relevant to the post-transient response. If it is arranged that the dimensionless
groups Re0, Re1 and α are the same for two systems, complete dynamical similarity
will be achieved. The behaviour observed in one system can then be used to predict
the response of the other, even though some or all of the variables ν, D,Ub0, Ub1 and
dUb/dt might be different.

By varying slightly the approach to representing the problem in non-dimensional
form, a different dimensionless ramp rate parameter is obtained,

β =
D

U2
b0

(
dUb

dt

)
. (1)

This is simply α divided by Re2
0 and can therefore be used as an alternative to α for

the purpose of scaling. It is of interest to note that β can be expressed as the ratio of
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a time scale for the initial flow D/Ub0 and a time scale associated with the imposed
excursion Ub0/(dUb/dt). Pursuing this idea further and replacing D/Ub0 by D/Uτ0,
which as will be seen later, is a characteristic time scale associated with turbulent
diffusion, a further dimensionless ramp rate parameter can be defined,

γ =
D

Uτ0

(
1

Ubo

dUb

dt

)
. (2)

It can easily be shown that this parameter can be expressed as α multiplied by a
function of Re0 and, therefore, it too can be used as an alternative scaling parameter.
As will be explained later γ has special relevance to turbulence behaviour in the
particular non-periodic transient flows under consideration here because it provides
an indication of the extent to which turbulence in ramp-type transient flow is likely
to differ from that under conditions of pseudo-steady flow. If γ is very much less
than unity, the flow will at all times have a turbulence structure similar to that of
steady pipe flow at the current value of flow rate. We will describe such a flow as
‘pseudo-steady transient pipe flow’. However, if γ is greater than unity, the flow will
have a turbulence structure which differs markedly from that of steady pipe flow
and the response of turbulence to the initiation of the flow rate excursion will be
significantly delayed. The mean velocity field will also be modified. The bigger the
value of γ the greater will be the departure from the pseudo-steady state.

2. Experimental investigation
2.1. Flow loop and test section

The experiments reported here were carried out using a test section which was a
straight pipe of inside diameter 50.8 mm and length 9 m in which fully developed flow
was achieved. Water was used as the working fluid. The closed circuit arrangement
shown in figure 1 was employed. The flow was driven through the test section by
the constant head difference between the two tanks. Flow control was achieved by
adjusting the resistance using the pneumatically operated, computer-controlled valve
situated downstream of the test section. A turbine flow meter placed in series with
the flow control valve was used to measure the flow rate.

The test section consisted of a long length of polyvinyl chloride followed by a 2 m
length of precision bore glass tube (wall thickness 2 mm). Both were very smooth
internally and the inside diameters were carefully matched so that the junction
between them was flush. A honeycomb flow straightener situated at the inlet to
the test section was used to reduce any initial swirl. Fully developed flow could be
expected at the transparent section with such an arrangement. Five carefully prepared
pressure tappings were installed at equal intervals along the test section. The pressure
differences between the tappings were measured using a precision differential pressure
transducer of capacitance type.

2.2. Laser Doppler anemometer

A three-beam, two-component laser Doppler anemometer system utilizing frequency
trackers was used to make simultaneous measurements of both axial and radial,
or axial and circumferential, components of the velocity field. The forward scatter
mode of operation was chosen in order to take advantage of the strength of the
light scattered in this direction. The system was assembled from standard DANTEC
optical components and electronic modules.
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Figure 1. Experimental apparatus.

An arrangement of the beams was chosen which gave the velocity components
in the directions ±45◦ to the axis of the pipe. The vertical and horizontal velocity
components were calculated using the signals from the two channels. This arrangement
has two advantages over an arrangement involving direct measurement of the vertical
and horizontal components. Firstly, as the signals from the two channels are similar
in magnitude and both are strong, the effects of electronic noise during processing and
transmitting are similar in each case and relatively small. Also, with signals of similar
magnitude, the performance of the PCI fast AD convertor is improved. Secondly, the
symmetric arrangement of the beams allowed measurements to be made much closer
to the wall than would otherwise have been possible.

The glass section of tube was surrounded by a transparent box of square cross-
section filled with water. This helped to overcome difficulties due to the curvature
of the wall and so improved the near-wall measurements. An arrangement whereby
the photomultiplier was used off-alignment with the laser beam was found to help
in significantly reducing the noise caused by reflections from the wall. The angle was
varied between 5◦ and 15◦ to the x-axis when making measurements. The glass section
was demounted and cleaned regularly to remove any dirt which settled on the wall.

The position of the measuring volume along the x-axis was chosen using the method
proposed by Oldengarm, Krieken & Klooster (1975). They suggested that when the
measuring volume reached the wall, light scattered from the particles attached to the
wall would generate a sine wave signal. The amplitude of this bias frequency signal
is a maximum when the centre of the measuring volume coincides with the wall
surface. The wall position chosen this way was subsequently checked by exploring the
symmetry of the mean velocity distribution. Initially, the position of the measuring
volume along the y-axis was chosen by looking at the reflected beam from the far
sidewall of the test section tube. The reflection would fail to follow the incident route
if the incident beam was off the x-axis radius of the pipe, as shown in figure 2(a).
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Figure 2. Determination of position of measuring volume in the y-direction.

A second approach was used in which the measuring volume was moved halfway
between the centre and the wall of the tube. The angle between the incident and
reflected beams then formed a 90◦ angle as shown in figure 2(b).

The dimensions of the LDA measuring volume were 0.053 mm×0.053 mm×0.77 mm
(or 0.5×0.5×7 in wall units based on the lowest flow rate) with the longest dimension
being in the x-direction, as specified in figure 2. It was moved along the x-axis to
make measurements of the axial and circumferential velocity components (u and w)
and moved along the y-axis to make measurements of the axial and radial velocity
components (u and v). The fact that such measurements are made over a volume of
finite dimension and that the velocity gradient increases near the wall can lead to
error. In the present investigation, the error in the evaluation of turbulence stresses
associated with such reasons was estimated using the formula due to Durst et al.
(1994) to be less than 10%.

The experimental uncertainties in mean velocity measurement in the present ex-
periments were mainly due to (a) limitations in the repeatability of flow control and
accuracy of flow measurement, (b) uncertainty in determining the LDA frequency–
velocity coefficient and (c) the accuracy of the frequency tracker. The combined
uncertainty was estimated to be less than 10%. The uncertainties in the measure-
ments of turbulence quantities were mainly due to the limitations of the trackers. In
the region near the wall, error could also result from inaccuracy in position control
and the averaging over the finite dimension of the measuring volume. The maximum
uncertainty in the measured turbulence quantities was estimated to be about 20%.
Very near the wall, ‘drop-out’ of the tracker signal sometimes occurred due to poor
quality of signal, caused perhaps by the presence of dirt on the surface of the test
section. This increased the uncertainty of some of the measurements.

Some measurements of turbulent stresses made in the present study under con-
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Figure 3. Turbulent stresses in a fully developed pipe flow.

ditions of steady flow at a Reynolds number of 34 800 are presented in figure 3. Also
shown are measurements made using hot-wire probes in a detailed study of fully
developed pipe flow reported by Lawn (1971). These were chosen for comparison
with the present data because of the very careful attention paid to the accuracy in
that study, and also because of the close match in terms of Reynolds number. It can
be seen from the figure that the two sets of measurements are in good agreement. The
measurements of normalized turbulent shear stress from both studies follow closely
the linear variation expected for fully developed pipe flow over the region where
turbulent shear stress dominates viscous shear stress.

2.3. Flow control and data acquisition systems

The flow control and data acquisition system shown in figure 1 was developed specially
for use in this study. It utilized two personal computers and a Microvax system. PCI
modules were used for interfacing the computers with the experiment. These made
digital to analogue and analogue to digital conversions and incorporated standard
clock, trigger signal and other special functions.

Flow control was achieved using one of the personal computers in conjunction with
an electronic position controller and a pneumatic activator. A prescribed flow rate
was converted to a valve-opening signal in the computer and sent to the electronic
position controller. The latter then drove the pneumatic activator to operate the
valve until the demanded opening had been achieved. Very accurate flow control with
excellent repeatability was achieved using this system. The flow rate passing through
the test section was measured by the turbine flow meter, the electrical output signal
from which was of square-wave form with a frequency proportional to flow rate. The
frequency of the signal was determined using the computer which performed the flow
control to measure the time interval of the square wave using the standard clock.

Two data sampling schemes were available. In the case of the first one, up to eight
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channels of data could be sampled at high speed (utilizing a personal computer and
the Microvax). The data collected were sent directly to the Microvax which had a
large memory for data storage and performed data processing at high speed. In the
second scheme, data could be sampled using a personal computer with the use of
the sample-and-hold technique to ensure that information sampled from different
channels corresponded to exactly the same point in time. This was necessary for
correlation calculations. The highest possible sample rate with this arrangement was
approximately 15 kHz. Approximately 540 kbytes of the dynamic memory of the
computer were made available to serve as the data buffer. This was enough for most
of the experiments carried out except for the two longest tests (excursions of flow
rate over time periods of 45 and 90 s). The sample rate for these tests was reduced in
order to make continuous sampling possible.

2.4. Data processing

For a ramp-type excursion of flow rate, the instantaneous local velocity can be
decomposed into an ensemble-averaged mean velocity and a turbulent fluctuating
velocity. The ensemble-averaged mean velocity U is defined as

U(t) = lim
N→∞

1

N

N∑
i=1

ui(t), (3)

where ui represents any component of the instantaneous velocity of the ith repeat of
the flow transient, t is the time which has elapsed after the start of the transient and
N is the total number the flow excursion repeats, which in practice has to be a large
number. The ensemble-averaged normal stresses are defined as

u(t)2 = lim
N→∞

1

N

N∑
i=1

[ui(t)−U(t)]2, (4)

v(t)2 = lim
N→∞

1

N

N∑
i=1

vi(t)
2, (5)

w(t)2 = lim
N→∞

1

N

N∑
i=1

wi(t)
2, (6)

and the ensemble-averaged shear stress as

uv(t) = lim
N→∞

1

N

N∑
i=1

[ui(t)−U(t)]vi(t). (7)

The root-mean-square values of components of turbulent velocity fluctuations are
then defined under the concept of ensemble averaging as

u′(t) =
√
u(t)2, v′(t) =

√
v(t)2, w′(t) =

√
w(t)2. (8)

It should be noted that rather than utilizing the brackets notation 〈 〉, capital
characters or small characters with a bar above them will be used to denote ensemble-
averaged values. The term ‘mean’ will be used to denote the ensemble average unless
otherwise stated.

It was found from preliminary experiments that at least several hundred samples
were needed before convergence was achieved in the calculation of local mean velocity
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and turbulence quantities. Obviously, it was not a practical proposition to perform
many hundreds of experimental realizations to obtain ensemble-averaged information
for the ramp-type flow excursions studied in this investigation. For example, up to 10
hours would have been needed to make 600 runs for experiments at a single location
in the case of an excursion of time period 20 s. Even if one could have afforded the
time, variations in the experimental conditions over a 10 hour time period would have
posed a problem. A modified ensemble-averaging scheme was therefore employed in
the present investigation in order to reduce the number of realizations needed. With
this modified scheme, the duration of a transient is divided into a number of small
windows, each of which contains a number of samples. The number of windows was
chosen so that the variation of the mean velocity in each of the windows was much
less than the turbulent fluctuating velocity during the same period. The ensemble-
averaged mean velocity within each window was therefore taken to be constant and
the conventional ensemble-average procedure was applied to each window rather
than each point for the purpose of computing mean velocity and root-mean-square
fluctuation of velocity.

Under the modified scheme, the ensemble-averaged mean velocity can be expressed
as

Uk =
1

NM

N∑
i=1

M∑
j=1

ui,j+(k−1)M (9)

and the Reynolds stresses expressed as

u2
k =

1

NM

N∑
i=1

M∑
j=1

(ui,j+(k−1)M −Uk)
2, (10)

v2
k =

1

NM

N∑
i=1

M∑
j=1

v2
i,j+(k−1)M, (11)

w2
k =

1

NM

N∑
i=1

M∑
j=1

w2
i,j+(k−1)M, (12)

uvk =
1

NM

N∑
i=1

M∑
j=1

(ui,j+(k−1)M −Uk)vi,j+(k−1)M, (13)

where k = 1, 2, . . . , L and L is the number of windows in a realization of the transient.
M and N denote the number of samples in each window and the number of repeats of
the transient respectively; ui,j+(k−1)M , is the (j+(k−1)M)th sample of the instantaneous
velocity for the ith run.

2.5. Experimental conditions

In the main experimental program of the present study, ramp-up experiments were
performed in which the ramp rate dUb/dt was varied by imposing excursions of
flow rate during which the bulk velocity increased linearly with time from an initial
value Ub0 of 0.138 m s−1 to a final value Ub1 of 0.891 m s−1 in periods of time which
ranged from 2 s to 90 s. Thus, the initial and final Reynolds numbers Re0 and Re1

were constant (at the values 7000 and 45 200) but the dimensionless ramp rate
parameter γ increased systematically from 0.34 (pseudo-steady flow) to 15.3 (unsteady
turbulent flow). Corresponding experiments were performed in which ramp-down



Turbulence in transient flow in a pipe 11

Initial Final
Reynolds Reynolds γ

(
=

dUb

dt

1

Ub0

D

Uτ0

)
No. number number Time period (s) dU/Dt (m s−2)

(a) 1 7000 45200 2 0.378 15.3
2 7000 45200 5 0.151 6.1
3 7000 45200 10 0.0754 3.1
4 7000 45200 15 0.0503 2.0
5 7000 45200 25 0.0302 1.2
6 7000 45200 45 0.0168 0.68
7 7000 45200 90 0.0084 0.34
8 13900 45200 8.2 0.0754 0.81
9 20900 45200 6.36 0.0754 0.39

10 27800 45200 4.55 0.0754 0.23

(b) 1 45200 7000 2 −0.378 −0.46
2 45200 7000 5 −0.151 −0.19
3 45200 7000 10 −0.0754 −0.093
4 45200 7000 15 −0.0503 −0.062
5 45200 7000 25 −0.0302 −0.037
6 45200 7000 45 −0.0168 −0.021
7 34800 7000 7.27 −0.0754 −0.15
8 27800 7000 5.45 −0.0754 −0.23
9 20900 7000 3.64 −0.0754 −0.39

Table 1. Experimental conditions: (a) ramp-up excursions, (b) ramp-down excursions. The ramp
rate parameter γ was calculated based on the starting flow conditions. For a ramp-up transient,
this parameter decreases as the flow increases. For a ramp-down transient, it increases as the flow
decreases. In this case, delays can be significantly larger in the later stages of the excursion than
the values shown in the table might suggest.

excursions of flow rate were imposed. Bulk velocity decreased from 0.891 m s−1 to
0.138 m s−1 over periods of time which ranged from 45 s to 2 s. Thus, the initial and
final Reynolds numbers Re0 were constant (at the values 45 200 and 7000) and the
dimensionless ramp rate parameter γ varied systematically in the range −0.021 to
−0.46. It should be noted that the above values of γ are based on the parameters at
the start of the excursions and should not therefore be taken as suggesting that the
conditions of pseudo-steady flow prevailed throughout. As a ramp-down excursion of
flow rate proceeds, the velocity and time scales reduce and delays in the response of
turbulence become progressively longer. Therefore, greater departures from pseudo-
steady conditions develop.

In a further programme of experiments, ramp-up and ramp-down excursions were
imposed in which the initial velocity was varied but the ramp rate was kept fixed.
In those experiments, both the initial Reynolds number Re0 and the dimensionless
ramp rate parameter γ varied but the final Reynolds number Re1 was constant. In
the ramp-up experiments, the parameters Re0 and γ were respectively 7000 and 3.1,
13 900 and 0.81, 20 900 and 0.39, 27 800 and 0.23 and Re1 was 45 200. Thus the
conditions varied from those of unsteady turbulent pipe flow to pseudo-steady flow.
In the corresponding ramp-down experiments Re0 and γ were respectively 45 200 and
−0.093, 34 800 and −0.15, 27 800 and −0.23, 20 900 and −0.39 and the final Reynolds
number Re1 was 7000.

The experimental conditions covered in the present investigation are summarized
in table 1. The locations where velocity measurements were made are shown in table
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No. r (mm) r/R y (mm) y+∗
0 y+∗∗

1

1 0 0.0 25.4 228.6 1168
2 4 0.157 21.4 192.6 984.4
3 8 0.315 17.4 156.6 800.4
4 12 0.472 13.4 120.6 616.4
5 16 0.63 9.4 84.6 432.4
6 18 0.71 7.4 66.6 340.4
7 20 0.787 5.4 48.6 248.4
8 21 0.827 4.4 39.6 202.4
9 22 0.866 3.4 30.6 156.4

10 23 0.906 2.4 21.6 110.4
11 23.5 0.925 1.9 17.1 87.4
12 24 0.945 1.4 12.6 64.4

Table 2. Measurement locations. y+∗
0 = yUτ/ν, in which Uτ = 0.009 for Reynolds number 7000

(start of flow transient) and ν = 10−6m2/s−1; y+∗∗
1 = yUτ/ν, in which Uτ = 0.046 for Reynolds

number 45 200 (end of flow transient) and ν = 10−6m2 s−1.

2. Also shown in that table are distances from the wall, non-dimensionalized using
viscous lengths corresponding to the starting and end flow rates, respectively.

In addition to the transient flow experiments, a series of steady-state experiments
were performed at a number of particular flow rates within the range covered in
the transient flow experiments. The data obtained were time averaged in the usual
manner for steady flow to give mean velocity and turbulence quantities. The results
provide a pseudo-steady-state reference for comparison with data obtained in the
transient flow experiments.

3. Experimental results
3.1. Ensemble-averaged local mean velocity

The development of local mean velocity throughout a 5 s time period ramp-up
excursion of flow rate (Re0 = 7000 and γ = 6.1) of the main experimental programme
is shown in figure 4 for a number of radial positions. The results are plotted as a
function of Reynolds number but since this is directly related to flow rate, the increase
of which is proportional to the time from the start of the excursion, the variation is
the same as it would be with time.

A clear difference can be seen in the response of the local velocity in core and wall
regions. In the first part of the excursion, the rate of the increase of velocity tends to be
similar at all positions. When compared with pseudo-steady flow variations, the flow
in the near-wall region over-responds and that in the core region under-responds.
This trend is reversed during the excursion. The same set of data is re-plotted in
figure 5 in the form of profiles of local mean velocity at a number of stages in the
excursion. These are shown together with the corresponding measured pseudo-steady-
state velocity profiles. It can be clearly seen that in the early stage of the transient the
velocity profile is flattened, an effect which has also been found in the acceleration
stage of pulsating flows (Tu & Ramaprian 1983). Later, the profile approaches the
pseudo-steady shape. There is almost no distortion of the profile towards the end of
the excursion.

The features just identified of the response of the local mean velocity for the 5 s time
period ramp-up flow excursion were also evident in corresponding ramp-up results
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Figure 4. Variation of local mean velocity in a 5 s time period ramp-up flow excursion.
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Figure 5. Development of local mean velocity profile in a 5 s time period ramp-up flow excursion.

for time periods of 10 and 15 s (not presented here) for which γ = 3.1 and 2.0. The
departures of the profiles from the corresponding pseudo-steady shapes are smaller
than in the case of the 5 s time period case and they are limited to earlier stages
of the excursion. However, in terms of absolute time from the start of a transient,
the distortion of the velocity distribution occurs over approximately the same period.
Figure 6 shows results for a ramp-up excursion of flow rate with a time period of 45 s,
for which γ = 0.68. It is clear that for this case the local mean velocity is virtually
identical to that for pseudo-steady flow.

3.2. Turbulence field

The time variation of the axial component of RMS velocity fluctuation during a
5 s time period ramp-up flow excursion (with γ = 6.1) is shown in figure 7 for



14 S. He and J. D. Jackson

1.0

1.2

0.8

0.6

0.2

0
14 21 28 35

Re

0.4

7 42
(¬103)

U
(m

 s
–1

)

Figure 6. Variation of local mean velocity in a 45 s time period ramp-up flow excursion.
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Figure 7. Variation of RMS fluctuation of axial velocity component in a 5 s time period ramp-up
flow excursion. Symbols as in figure 4.

several radial positions. The corresponding pseudo-steady results are also shown for
comparison. One of the most striking features of the response of velocity fluctuation
to the imposed flow transient is a ‘delay’ effect. As can be seen, the turbulent velocity
fluctuation u′ does not follow the corresponding pseudo-steady variation, but instead
exhibits a two-stage variation. In the core region, there is a very slow response for
much of the excursion period after which a marked change occurs and u′ builds
up at a much faster rate. The discrepancies between the transient values and the
pseudo-steady values reduce during the later period of the excursion but the transient
values are still well below the steady-state values even at the end of the excursion.
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Figure 8. Variation of RMS fluctuation of radial velocity component in a 5 s time period ramp-up
flow excursion. Symbols as in figure 4.

Very close to the wall, the behaviour is more complicated. There, an additional feature
is evident. A rapid upsurge in u′ to the steady-state value occurs after a very slight
initial delay. Then there is a slight fall followed by a recovery.

The period of time from the start of an excursion to the point at which the faster
response starts will be described here as the delay period τ. This is clearly a function
of radial position. Very near the wall the delay is less than 1 s. The further the
position is away from the wall, the longer is the delay. At the centre it approaches
4 s. Within the core, the magnitude of the u′ does not remain absolutely unchanged
during the delay period but rather increases slowly. The rate of increase remains
constant throughout the delay and appears to be the same at various positions.

It can be seen that the response of u′ to the imposed excursion starts in the wall
region and is transmitted at a certain speed towards the centre of the pipe. We will
see later (§ 4.3) that this is related to the friction velocity Uτ0 at the start of the
excursion. These observations can be related to those made by Shemer et al. (1985)
and Tardu et al. (1994) for pulsating flows, in which the phase shift of the response
of turbulence quantities was found to increase with distance from the wall. Clearly,
both effects result from delays associated with the propagation of the response of
turbulence. Similarly, in the study of unsteady pipe flow with stepwise increases of
flow rate of Maruyama et al. (1976) a delay in the radial propagation of the response
of turbulence was also clearly evident.

The development of the radial and circumferential components of the RMS tur-
bulent fluctuation velocity v′ and w′ is shown in figures 8 and 9, respectively, for the
5 s time period ramp-up case. Some of the features of the response of u′ described
above can also be seen in the response of v′ and w′. The most striking feature is
again a two-stage development. After the onset of the excursion of flow rate, the v′
and w′ components do not follow the pseudo-steady variation. Instead, they both
exhibit delayed responses for a period of time during which their variation is slight.
The delays increase with increase of distance from the wall. However, near the wall
in the region r/R > 0.79 (for which y+ 6 50) the responses of v′ and w′ are different
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Figure 9. Variation of RMS fluctuation of circumferential velocity component in a 5 s time period
ramp-up flow excursion. Symbols as in figure 4.

from that of u′. Instead of responding to the imposed transient after a very short
delay (a fraction of a second), the first stage of the response lasts for over a second
and does not depend on distance from the wall. The upsurge seen in the case of
u′ is not found. The different behaviour stems from the mechanisms in the supply
of energy to the various components. The axial component of turbulent energy is
directly extracted from the mean flow through the shear stress and the velocity gra-
dient. The change of the velocity profile under the action of the additional pressure
gradient initially results in direct generation of additional turbulent motion in the
axial direction. The main source of the increased radial and circumferential compo-
nents of the turbulent energy which develop later comes from the redistribution from
the axial direction through pressure strain. The time difference between the initial
response of u′ and those of v′ and w′ provides an indication of the time scale for such
processes.

The development of the axial and radial components of turbulence in the 5 s time
period ramp-up excursion are re-plotted in figure 10 with the fluctuations normalized
using the ensemble-averaged bulk velocity (i.e. as turbulence intensities). It can be seen
that turbulence intensity is attenuated in accelerating transient flow. This is clearly
consistent with the well-established behaviour in flows under spatial acceleration,
see for example, Narayanan & Ramjee (1969), Blackwelder & Kovasznay (1972),
Baskaran et al. (1987) and Webster et al. (1996) for boundary layer flows subjected
to favourable pressure gradients and Tanaka & Yabuki (1986), Sano & Asako (1993)
and Spencer et al. (1993) for internal flows in contractions. However, as can be seen
from figures 7 and 8, the absolute values of u′ and v′ do not actually reduce. The
reduction in turbulence intensity is a consequence of the delayed response of the
turbulence quantities. As the ensemble-averaged mean velocity increases, u′ and v′
remain at or near to their initial values or increase at a rate slower than their pseudo-
steady counterparts. Blackwelder & Kovasznay (1972) and Tanaka & Yabuki (1986)
both pointed out in their studies (of relaminarization in a boundary layer flow and
a converging channel flow respectively) that the absolute value of turbulence stresses
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Figure 10. Variation of turbulence intensity in a 5 s time period ramp-up flow excursion.
(a) Axial component, (b) radial component.

did not reduce, although the intensity reduced significantly. The reason they gave was
that the acceleration was relatively mild.

The time development of ensemble-averaged turbulent shear stress in the 5 s time
period ramp-up flow excursion is shown in figure 11 for a number of radial positions.
This response also exhibits the features of delay and propagation. After the imposition
of the excursion, turbulent shear stress remains completely unchanged for a period.
There then follows a stage during which it builds up towards the pseudo-steady flow
value. As in the case of the normal stresses and also the turbulent kinetic energy,
the delay at positions in the core region is dependent on the distance from the wall.
In the wall region the development of the turbulent shear stress is similar to that
of the radial and circumferential components of the turbulence, exhibiting a distinct
delay for a period which is independent of the location. The main difference between
the response of the shear stress and the normal stresses is that shear stress remains
virtually unchanged during the delay period whereas the normal stresses (and the
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Figure 11. Variation of turbulent shear stress in a 5 s time period ramp-up flow excursion.
Symbols as in figure 4.
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Figure 12. Variation of the ratio of v′/u′ in a 5 s time period ramp-up flow excursion.

turbulent kinetic energy) increase slowly during this period, although the increases
are small compared with the corresponding ones for pseudo-steady flow.

Figure 12 shows the development of the ratio of the radial to axial components of
the turbulent velocity fluctuation at several radial positions across the section of the
pipe during the 5 s time period ramp-up flow excursion. It is interesting to note that,
in the core flow, the variation of this ratio generally follows that of pseudo-steady
flow. A two-stage development is not manifested. This indicates that the mechanisms
controlling the delay and recovery of turbulence in response to an imposed transient
are quantitatively similar in that region for these two components. Webster et al.
(1996) found a similar result. In their study of the turbulence characteristics of a
boundary layer flow over a two-dimensional bump the normal stresses responded
nearly identically. In contrast to the core region, the behaviour near the wall region
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Figure 13. Variation of RMS fluctuation of axial velocity component in a 45 s time period
ramp-up flow excursion. Symbols as in figure 4.

(r = 23.5 m, y+ = 17) is very different. After a very short delay, the ratio of v′ to
u′ at first falls well below the pseudo-steady flow variation and remains at a low
level for a period of approximately 1.8 s, after which it increases rapidly. Within a
very short time, it reaches a level which is slightly higher than the pseudo-steady
flow counterpart and remains so until the end of the imposed flow excursion. The
periods of time for the reduction and for the recovery are the same for all radial
positions in the near-wall region. The extent of the reduction is different though.
This behaviour can be associated with the way energy is supplied to the various
components. Whereas the axial component of turbulent energy is directly extracted
from the mean flow through the shear stress and the velocity gradient, the main
source of additional radial and circumferential components of the turbulent energy
stems from the redistribution from the axial component through pressure strain.

We next consider the response of turbulence in a very slow transient (the 45 s time
period ramp-up flow excursion, for which Re0 = 7000 and γ = 0.68). From figure 13,
it can be seen that delays in the response of u′ in the early stages of flow excursion are
still evident even in such a slow transient, again reaching a value of about 4 s in the
core, although as seen earlier the mean velocity distributions are in close agreement
with the corresponding pseudo-steady-state ones. In the later stages, however, u′ does
not deviate much from the corresponding values for pseudo-steady flow.

On examining the responses of the u′ turbulent fluctuation in the core flow to
ramp-up excursions of flow rate of various time periods from 5 to 45 s, one finds
that the delays are in all cases more or less the same at a particular position despite
the imposed acceleration being very different. A comparison of the responses of
turbulence at the centre of the pipe for ramp-up excursions of various time period
is shown in figure 14. The change-over points of the response curves are indicated
with arrows. The absolute delays are given in table 3. It is apparent that they deviate
little from a mean value of about 4 s, so that there is no systematic effect of the
imposed flow acceleration on the delay. However, as can be seen from figure 14,
the deviations of the u′ responses for transient flow from the corresponding pseudo-
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Figure 14. Comparison of the responses of RMS fluctuation of axial velocity component at pipe
centre for various ramp rates.

Ramp time period (s) 5 10 15 25 45
Dimensionless ramp rate parameter γ 6.1 3.1 2 1.5 0.68
Delay τ (s) 3.9 4.1 4.0 3.9 4.0

Table 3. Absolute delays at the centre of the pipe.

steady variations differ significantly. They decrease progressively with reduction of
ramp rate parameter. However, even for the 45 s time period excursion (γ = 0.68),
some deviation is evident.

The corresponding variations of the radial component of the turbulent fluctuation
velocity v′ at the centre of the pipe for ramp-up excursions of flow rate of various
time periods are plotted in figure 15. It is clear that the behaviour is very similar to
that of u′. The time scales for the response of the two components are practically the
same at the centre of the pipe. There is no evidence of energy transfer from the axial
component to the radial one in this region. In other words, the time scales associated
with pressure–strain effects are negligible compared with those for turbulence diffusion
in the core region. Shemer et al. (1985) arrived at the same conclusion after examining
the responses of u′ and v′ in a pulsating flow.

Figures 16 and 17 show the development of u′ and v′ in a 5 s time period ramp-down
transient flow (for which γ = −0.19) along with the corresponding pseudo-steady
variations. The spread of the data is greater than that in the corresponding cases for
ramp-up flow. However, some interesting effects can still be seen. There is evidence
of a delayed response which builds up with distance from the wall. However, the
delay is much smaller than in the corresponding ramp-up excursion, only reaching
a maximum of just under 1 s in the core region. During the subsequent fall, the
transient values lie above the corresponding pseudo-steady values and the difference
builds up slightly as the excursion proceeds. It is clear that the intensity of turbulence
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Figure 16. Variation of RMS fluctuation of axial velocity component in a 5 s time period
ramp-down flow excursion.

is greater in the transient flow case than for steady flow. The features exhibited by
these ramp-down experiments will be considered further later in the paper.

We next consider the further programme of experiments which was conducted with
a view to studying the effect of the starting flow rate of the imposed excursions
on the response of turbulence. In the case of ramp-up excursions the starting flow
rate was varied systematically between 0.278 to 1.11 kg s−1 (corresponding to values
of Reynolds number of 7000 and 27 800). By adjusting the time period for each
experiment, the ramp rate dUb/ dt was kept constant at the value equal to that for
the 10 s ramp-up flow excursions of the main series of experiments discussed earlier.
Ramp-down experiments, starting from various flow rates in the range 0.834 to
1.806 kg s−1 (corresponding to the values of Reynolds number of 20 900 and 45 200)
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ramp-down flow excursion. Symbols are as in figure 16.
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Figure 18. Influence of starting Reynolds number on the response at pipe centre of the RMS
fluctuation of axial component for ramp-up and ramp-down excursion of flow rate.

and ending at a flow rate of 0.278 kg s−1 (Reynolds number 7000) were also performed.
The time periods were again chosen to give a ramp rate of the same absolute value
as that for the 10 s time period ramp-up experiment of the first series.

In this programme of experiments, measurements were only made at the centre of
the pipe. The u′ responses obtained are shown in figure 18, where the effect of varying
the starting flow rate on the initial delay in the response of the turbulence can be
clearly seen for both the ramp-up and ramp-down cases. With the increase of the
starting flow rate, the delay systematically decreases. This appears to be so whether
the imposed transient involves accelerating or decelerating the fluid. In the later stages
of the excursions, all the data for the ramp-up experiments collapse onto a single line
and those for the ramp-down tests all collapse onto another one. A similar picture
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Figure 19. Influence of starting Reynolds number on the response at pipe centre of the RMS
fluctuation of radial velocity component for ramp-up and ramp-down excursion of flow rate.
Symbols are as in figure 18.

is provided by the results in figure 19, where the corresponding development of v′ is
presented.

4. Discussion of results
4.1. Inertial effect

Taking a time mean view of steady fully developed turbulent pipe flow, two forces
can be thought of as acting on the fluid within a fixed elemental control volume
and being in balance with each other. These are a net pressure force resulting from
the applied gradient and a net shear force due to the combined action of molecular
diffusion and turbulent mixing. In the case of unsteady flow, the inertia of the fluid
within the control volume must be considered as well. Taking an ensemble-average
view of the problem, the equation describing the balance takes the following form:

∂U

∂t
= −1

ρ

dP

dx
+

1

rρ

∂

∂r
(rτ) (14)

in which

τ = µ
∂U

∂r
− ρuv. (15)

In the above equations, P is manometric pressure, t is time, x and r are the axial
and radial coordinates, respectively, ρ is density, µ is dynamic viscosity and ρuv
is turbulent shear stress. As the distribution of velocity, the local turbulent shear
stress and the applied pressure gradient are all known from the measurements made
in the present study, each of the terms in (14) can be evaluated. However, due to
experimental uncertainties, bearing in mind that the calculation of some of those
terms involves either the first or the second derivatives of the measured distributions,
one cannot expect to achieve an exact balance. In practice, the imbalance becomes
particularly apparent near to the wall. The turbulent shear force derived from the
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Figure 20. Comparison of momentum equation terms for 5 s time period ramp-up flow excursion (In-
ertia: r(∂u/∂t), Pressure: ((r/ρ)(dP )/(dx)), Viscous: (−∂/∂r)[(rν)(∂U/∂r)], Turbulent: (∂/∂r)[ruv]):
(a) time = 0 s, flow rate = 0.278 kg s−1, Re = 7000; (b) time = 0.91 s, flow rate = 0.556 kg s−1,
Re = 13 900; (c) time = 1.82 s, flow rate = 0.834 kg s−1, Re = 20 900; (d) time = 2.73 s, flow rate =
1.112 kg s−1, Re = 27 800; (e) time = 3.64 s, flow rate = 1.390 kg s−1, Re = 34 800; (f) time = 4.55 s,
flow rate = 1.668 kg s−1, Re = 41 800.

derivatives of the measured turbulent shear stress presents particular difficulties and
is not reliable for the region r > 21 mm.

The balances of the terms in (14) for r 6 21 mm at a number of stages in the 5
and 45 s ramp-up flow excursion experiments (for which Re0 = 7000 and γ = 6.1
and 0.68 respectively) are shown in figures 20 and 21. At an early stage in the 5 s
time period excursion (0.91 s, figure 20b), the magnitudes of the pressure gradient
force and the inertia force terms are much larger than the shear stress force terms
and are approximately in balance with each another. As the excursion proceeds,
the contribution of the turbulent shear force becomes progressively more and more
significant (figures 20c onwards). The build-up of turbulent shear force starts in the
wall region and gradually extends towards the centre. By the time the flow rate
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Figure 21. As figure 20 but for 45 s time period ramp-up flow excursion: (a) time = 0 s, flow rate
= 0.278 kg s−1, Re = 7000; (b) time = 8.2 s, flow rate = 0.556 kg s−1, Re = 13 900; (c) time = 16.4 s,
flow rate = 0.834 kg s−1, Re = 20 900; (d) time = 24.6 s, flow rate = 1.112 kg s−1, Re = 27 800; (e)
time = 32.7 s, flow rate = 1.390 kg s−1, Re = 34 800; (f) time = 40.9 s, flow rate = 1.668 kg s−1,
Re = 41 800.

reaches 1.39 kg s−1 (3.64 s, figure 20e), the distribution of the turbulent shear force
between the wall region and the centre starts to approach the linear variation with
radial position, characteristic of a fully developed steady flow. Even at this stage,
however, the contribution of inertia to the balance is still greater than that of shear.

From figure 21, it can be seen that even for a very slowly rising ramp (45 s time
period excursion, γ = 0.68), the contribution of inertia is still of importance in the
early stages of the transient. Even a small acceleration involves an inertia force which
makes a significant contribution to the balance. At the beginning of the excursion, the
magnitudes of other terms in the momentum equation are relatively small. However,
the turbulent shear force builds up rapidly and the inertia term becomes progressively
smaller.

Although the contribution of inertia in the force balance is significant over a wide
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range of conditions, its effect on the local mean velocity field is rather restricted. As
we have seen earlier, a significant distortion of the mean velocity profile only occurs
in the early stages of the faster transients. Under other conditions, the velocity profiles
are similar to those of pseudo-steady flow even though the inertial contribution to
the force balance is still significant.

An understanding of the effect of inertia on velocity profile shape during a ramp-up
excursion can be arrived at as follows. In order to impose an excursion of flow rate,
an extra pressure gradient is needed. In the very early stages of an excursion, the
inertia force needed to accelerate the flow and the force due to viscous shear are
in balance with the force due to the additional imposed pressure gradient as no
additional turbulence exists. Since the distribution of the pressure gradient across
the flow is uniform, the fluid tends to accelerate at a similar rate at all positions
across the section. However, the fact that the velocity of the fluid must vanish at
the wall acts as a constraint and consequently distortion of the profile must occur.
At the beginning of the imposed transient, additional shear is confined to a very
thin layer of fluid near to the wall. As a result, the velocity of the fluid in the core
region initially responds to the additional pressure gradient almost as a ‘slug’. The
radial gradient of the velocity remains relatively unchanged in the core, but steep
velocity gradients are generated in the wall region, to accommodate the increase in
bulk velocity. Due to the combined influence of molecular diffusion and turbulent
mixing, the effect of the wall constraint on the distribution of velocity propagates
into the core region. This propagation occurs slowly in the viscous sublayer where
molecular diffusion is the main mechanism for momentum transfer. However, this
layer is thin. The propagation is faster in the region further out, where turbulent
mixing becomes significant. Consequently, the wall constraint manifests itself more
strongly in the viscous sublayer and more weakly in other regions. The degree to
which the velocity profile is modified initially by the wall constraint is dependent on
the thickness of the viscous sublayer (which is known to scale with ν/Uτ0, where Uτ0

is the friction velocity at the start of the excursion), and this is determined by the
initial Reynolds number. Propagation of the wall constraint has also been discussed
in papers on pulsating flows. In that case, the Stokes sublayer

√
2ν/ω is used. This

provides a measure of the extent to which the wall constraint extends during a cycle
of the flow variation (Mao & Hanratty 1986 and Tardu et al. 1994).

4.2. Production and redistribution of turbulent energy

As is well known, the energy of the turbulence field in a turbulent boundary layer
is extracted from the organized mean flow. In simple shear flows, the production
of turbulent kinetic energy occurs at a rate mainly determined by the product of
the radial gradient of mean velocity and the turbulent shear stress. The response of
the latter cannot precede that of turbulent kinetic energy, so the response of the
turbulence field in transient flow initially results from changes of velocity gradient.

Upon imposing an extra pressure gradient to initiate a flow excursion, the velocity
field starts to respond in the manner described in the preceding section. The increase
of velocity gradient in the wall region offers a potential for increase in the production
of turbulent energy but unless the region where the velocity gradient increases overlays
that where turbulence production is high, i.e. the region within the buffer layer, the
increase of the turbulence production will be confined to a low level. When the two
regions do overlay each other, the production of turbulent energy will increase and
an increase of turbulent kinetic energy will follow. We therefore expect to find a delay
in the response of turbulence production in relation to the variation of the mean
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flow. To form a time scale for this delay based on the physical picture, a length scale
associated with the thickness of the buffer layer and a speed related to the molecular
diffusion should be used. This leads to a time scale of the form ν/U2

τ .
Delay in the response of turbulence production can be viewed differently utilizing

the concept of turbulence bursting. Assuming that turbulence is produced locally in
an intermittent manner as a result of turbulent bursts, production will not respond
to an imposed variation of the flow until the next burst takes place. Some delay
must therefore occur; the average value will be half the time interval between two
bursts. This would again suggest that the delay in turbulence production might be
scaled using the parameter ν/U2

τ , which has been used to characterize the turbulence
bursting frequency (Blackwelder & Haritonidis 1983).

Along with the build-up of turbulent energy in the buffer region, diffusion of
turbulence to the adjacent areas increases and so does the turbulent energy in those
areas. In the first instance, this is confined to the velocity component in the axial
direction since the production of turbulence appears only in the conservation equation
for that direction. Turbulent energy is later redistributed from the axial direction into
other directions through the action of pressure strain. As mentioned earlier, it has been
found from the present experimental results that as the axial component of turbulent
energy increases the radial and circumferential components remain unchanged for a
short period, after which both increase simultaneously over a region of flow near the
wall. We can therefore speculate that turbulent disturbances in the axial direction,
generated in the wall region, remain in this direction in the first instance during their
transmission outwards into the core. On reaching a region further away from the
wall, where the constraint of the wall is weaker, the axial flow disturbances break up
and turbulent energy is re-arranged among the three directions. This action causes
turbulent energy in the radial and circumferential directions to increase simultaneously
over a relatively wide range of radial positions. Such energy redistribution has been
noted by Baskaran et al. (1987) in an accelerating boundary layer in their study of
turbulent flow over a curved hill. In that case, the redistribution of energy to the ν ′
component was at the expense of the other two components.

4.3. Turbulence propagation and the two-stage response

It has been seen that an important feature of transient turbulent flow is that the
response of the turbulence field starts first in a region very close to the wall and later
propagates outwards into the core. The development of the turbulence quantities
at any radial position can be divided into two stages. In the first stage, turbulence
quantities remain unchanged or respond to the imposed transient at a rather slow
rate. After a period of time (the delay), which is dependent on radial position and
Reynolds number, additional turbulence originating from the wall region arrives at
this position and a response of the turbulence quantities then follows at a much
faster rate. However, these quantities are still smaller in the case of a rising ramp
than the corresponding steady-state values and can be related to turbulence structure
which existed sometime earlier in the wall region, i.e. at a time when flow rate was
smaller. We will describe the two stages of the response as the ‘delay stage’ and the
‘developing stage’, respectively.

Assuming that the response of turbulence propagates as a result of turbulent
diffusion at a characteristic velocity Up and that the first response occurs at position
y0, the delay time at any position y can then be expressed as (y − y0)/Up. As seen
earlier (figures 18 and 19), the delay in the response of the turbulence quantities
depends on the starting Reynolds number. The greater the starting Reynolds number,
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the shorter is the delay time and thus the greater is the propagation speed. A natural
choice for the characteristic velocity of propagation in the turbulent region is the
friction velocity Uτ, the velocity scale normally associated with turbulence diffusion.
If we define a non-dimensional delay τ+(=

√
2τUτ0/D) using the time scale R/Uτ0 for

turbulence diffusion over a distance R, we find that the observed delay at the centre of
the pipe takes a constant value of about 1.0 for all the excursions considered so far.
This serves to support the choice of Uτ as the characteristic velocity for turbulence
propagation.

Utilizing the above ideas, we can now explain the observation made earlier in the
case of the series of ramp-up experiments with the same initial Reynolds number
that there was no influence of ramp rate on the delay in the response of turbulence
in the core. Shortly after the commencement of an imposed excursion of flow rate,
additional turbulence is generated in the wall region and this propagates outwards
at a speed characterized by the value of friction velocity associated with the initial
Reynolds number. As time proceeds, further turbulence is generated and this propa-
gates outwards at speeds which increase as the Reynolds number increases. Let us
designate the time taken for the turbulence generated at t = 0 to propagate a distance
y from the wall as τ0, that for the turbulence generated at some time t later as τ
and let us note that the τ will decrease with time at a rate which depends on the
imposed acceleration. Now, turbulence generated at time t will arrive at the position
under consideration at time τ + t and this function will vary in a manner which
depends on the ramp rate of the excursion. If this is below a certain limit, τ+ t will
increase steadily with time. In this case, turbulence generated at t = 0 will always
arrive at the location a distance y from the wall before any which is generated later
and its arrival will mark the end of the delay period. Under such conditions, the
delay in the response of turbulence at the location under consideration will be τ0

and its value will depend on initial Reynolds number but not on ramp rate. The
fact that no systematic variation of delay was observed as ramp rate was increased
in the series of experiments with constant initial Reynolds number indicates that the
above-mentioned limit was not reached in those experiments.

If the ramp rate of an imposed excursion of flow rate exceeds the limit referred
to above, the function τ+ t could initially decrease and reach a minimum value less
than τ0 at some time t1. The new structure generated at time t1 would then arrive
at the position earlier than that generated at t = 0. Therefore, the delay would be
reduced from τ0 to τ1 + t1 and this time would become shorter with the increase of
the acceleration of the fluid. An example of an excursion in which this is the case
will be discussed in § 4.4 where some additional results from the present study are
presented for an excursion of shorter time period (2 s). In the extreme situation, when
a step increase of flow rate is imposed, the delay time must be dependent on the
ultimate flow rate. As mentioned earlier, this is exactly what was found by Maruyama
et al. (1976) in the study of the response of turbulence to a stepwise increase in flow
rate.

During the ‘developing stage’, the variation of turbulence quantities is controlled
by the acceleration of the fluid and will be independent of the history of the flow
variation. No matter what was the value of flow rate at which the excursion began,
the development of the turbulence quantities in the developing stage will follow the
same variation as long as the acceleration of the flow is the same. This was illustrated
by the results shown in figures 18 and 19 from the series of experiments with constant
ramp rate, which clearly showed that the data for the axial and radial components
of the RMS turbulent fluctuations for various starting Reynolds numbers collapsed
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Figure 22. Flow rate variation in a 2 s time period ramp-up flow excursion test.

onto two different straight lines in the later stages of the ramp-up and ramp-down
transients, respectively. At any instant, the turbulence properties at position y can be
related to the flow which prevailed a period of time τ before. This time τ is equal to the
time taken for the turbulence to propagate from y0 to the position y. Taking Uτ as the
characteristic speed of the propagation, τ will then be proportional to y/Uτ. Thus,
the development of turbulence quantities in a transient flow might be approximated
using pseudo-steady data and simply correcting for the local delay time τ using√

2y/Uτ0. Since the delay time is not dependent on the acceleration of flow, for flow
excursions with a range of ramp periods the time lag between the development of
turbulence quantities in the transient flows will be the same. The difference between
turbulence quantities in the various excursions and their corresponding pseudo-steady
values will not, however, be the same (see figures 14 and 15). This is because, with
different accelerations, the flow rates and therefore their pseudo-steady turbulence
quantities are not the same in different excursions after the same period of time
although the delay period is the same. The faster the transient, the larger will be the
difference.

The propagation away from the wall of the response of turbulence in boundary
layer flow to changes in curvature or streamwise pressure gradient has been found to
occur in a manner which is similar to that in the present transient flow experiments,
see for example, Baskaran et al. (1987) and Webster et al. (1996). In these studies,
‘knee points’, which indicated changes in turbulence structure, always appeared first
near the wall. They gradually propagated towards the edge of the boundary layer as
the flow proceeded downstream. Below the ‘knee points’, the stresses increased with
downstream distance, which clearly indicated the arrival of new turbulence structure.

4.4. The post-transient response

In this subsection, we consider responses of local mean velocity and turbulence which
can occur after an imposed excursion of flow rate has ended. Results from some
additional experiments in which such measurements were obtained will be presented.
These include results from ramp-up experiments in which the bulk velocity was
increased from 0.139 m s−1 to 0.891 m s−1 over a time period of about 2 s (Re0 = 7000,
Re1 = 45 200 and γ = 15.3), in which data acquisition was extended for a period of



30 S. He and J. D. Jackson

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

1.2

1.0

0.8

0.6

0.4

0.2

0 5 10 15 20 25

Time (s)

r (mm)

0.0577

0.519

1.07

1.53

2.18

2.83

3.47

4.89

Time (s)

8 mm
12 mm
16 mm
18 mm
20 mm
22 mm
23.5 mm

(a)

(b)

U
(m

 s
–1

)
U

(m
 s

–1
)

r = 0 mm

Figure 23. Variation of local mean velocity during and after a 2 s time period ramp-up flow
excursion: (a) time variation, (b) profile development.

3 s after the end of the imposed flow excursion. Due to the mechanical limitations of
the valve used, the acceleration of the flow could not be maintained constant during
such a fast excursion, see figure 22. The results are nevertheless closely consistent
with those presented earlier for linearly varying flow rate excursions of longer time
period. Figures 23(a) and 23(b) show the time variation of local mean velocity and
development of the velocity profiles, respectively. It can be seen that during most
of the period of the imposed excursion, the local mean velocity in this experiment
increased at a similar rate at all the radial locations for which data were obtained.
Thus the flow accelerated in a slug-type manner. Later on, the velocity at locations
near the wall stopped increasing and this tendency gradually extended towards the
centre of the pipe. As can be seen from figure 22, the flow rate reached its final value
2.2 s after the start of the transient. Beyond that time, no further additional pressure
gradient was imposed on the flow. However, the velocity continued to vary locally for
about another 2 s. At the time that further increase of applied pressure ceased, the



Turbulence in transient flow in a pipe 31

0.10

0.08

0.06

0.04

0.02

0 1 2 3 4 5

0.06

0.05

0.04

0.0020

0 1 2 3 4 5
Time (s)

r = 0 mm

8 mm

12 mm

16 mm
18 mm

20 mm

22 mm

23.5 mm

(a)

(b)

u
«(

m
 s

–1
)

0.03

0.02

0.01

0 1 2 3 4 5

0.0015

0.0010

0.0005

(c)

v«
(m

 s
–1

)
uv

(m
2  

s–2
)

Figure 24. Variation of turbulence properties during and after a 2 s time period ramp-up transient:
(a) RMS fluctuation of axial velocity component, (b) RMS fluctuation of radial velocity component,
(c) turbulent shear stress.

velocity and turbulence fields still differed markedly from those of the corresponding
steady flow and therefore the velocity profile continued to change.

The time variation of turbulence quantities for this excursion is shown in figure 24.
A two-stage response is again clearly evident. At some locations, the delay extended
beyond the end of the imposed excursion of flow rate. The delays in u′ and v′ at the
centre of the pipe are about 3 s, about 1 s shorter than that found in the experiments
presented earlier (§ 3.2). Thus the observation made on the basis of the experiments
presented earlier that the delay in the response of turbulence in the core region does
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Figure 25. Variation of local mean velocity during and after a 5 s time period ramp flow excursion.

not depend on the time period of the ramp is no longer valid under the conditions
of this faster transient. A detailed explanation of why this is so has been given in the
preceding section. The turbulence field eventually settles down about 1.3 s after the
end of the flow excursion.

Figures 25 and 26 show the time variations of local mean velocity and the turbulence
components u′ and v′ for a 5 s time period ramp-up experiment for which data were
collected for 5 s after the end of the imposed excursion of flow rate. It is apparent
that the variations of both local mean velocity and turbulence which occur after the
end of the transient are less significant than those in the 2 s transient discussed above.
The additional pressure gradient needed to accelerate the flow in a 5 s transient is
much smaller than that in a 2 s transient and therefore causes less distortion of both
the flow and turbulence fields. At the end of the imposed excursion in the 2 s time
period case, turbulence has only been responding for a short time in most parts of
the flow field. In the core region, it is still within the delay stage and the turbulence
quantities are still not very different from their starting values. Consequently, at the
end of the excursion, the turbulence levels are far below those of the corresponding
pseudo-steady condition. However, in the case of excursion of longer time period,
five seconds have passed since the initiation of the transient and the turbulence
has had a relatively long time to respond. The turbulence quantities have increased
significantly, even at the centre of the pipe (where the delay period is about four
seconds). Consequently, the difference between turbulence quantities at the end of the
excursion of flow rate and the corresponding pseudo-steady-state values is much less
than in the case of the excursion of time period of 2 s. However, it seems that the time
needed for the flow and turbulence fields to eventually settle down is similar in both
excursions (about 1.3 s).As argued earlier, this time scale is likely to be dependent on
the final Reynolds number Re1(45 200).

4.5. Characterization of transient flow with ramp-type excursions of flow rate

It is clear from the results and discussion presented here that delays in the response
of turbulence to imposed variations of the mean flow field are an important feature
of ramp-type transient turbulent flow. Three delays have been identified, namely
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Figure 26. Variation of turbulent quantities during and after a 5 s time period ramp-up flow
excursion: (a) RMS fluctuation of axial velocity component, (b) RMS fluctuation of radial velocity
component. Symbols as in figure 25.

a delay in the response of turbulence production, a delay in the redistribution of
turbulence among its three components and a delay associated with the propagation of
turbulence radially. Of the three delays, the one associated with the radial propagation
of turbulence is the most pronounced under the conditions of the present experiments.

The dimensionless parameter γ[=(D/Uτ0)((1/Ub0)(dUb/dt))] introduced in § 1.6 for
the purpose of characterizing the ramp-type excursions of the present study was
defined using a time scale D/Uτ0 associated with the propagation of turbulence from
the wall to the centre of the core and a time scale for the imposed ramp Ub0/(dUb/dt).
It can be shown that this represents the degree of departure of turbulence within the
delay period from that for pseudo-steady flow. This can be seen by noting the fact that
turbulent energy intensity k1/2/Ub is generally only a weak function of Reynolds num-
ber. To a first order of approximation, we can assume that k1/2/Ub remains constant
during the period of an imposed transient. With this in mind, the ramp rate parameter
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γ can be re-written as ((dk/dt)(R/Uτ))/k. In this expression, dk/dt represents the rate
of increase of turbulent kinetic energy of a corresponding pseudo-steady flow which
would be associated with the imposed rate of increase of the flow rate. The ratio R/Uτ

is the time scale associated with the propagation of turbulence from the wall to the cen-
tre of the pipe. The product of the two provides a measure of the difference which will
develop during the delay period between the turbulent kinetic energy of the transient
flow and the corresponding pseudo-steady flow. This represents the greatest departure
of turbulence in the transient flow from its corresponding pseudo-steady value. After
the delay period, turbulence starts to respond and the difference reduces. On dividing
by the turbulent kinetic energy k, we obtain a relative measure of the difference.

Consequently, for γ � 1, we expect to see large deviations of turbulent energy in
a transient flow from the corresponding values for pseudo-steady flow. The mean
flow profiles will also depart from their pseudo-steady counterparts. Such flow is
appropriately classified as a ‘fast transient’. On the other hand, for γ � 1, the
deviations will be small and the flow can be classified as a ‘slow transient’. As an
example, we can see from table 1 that γ for the 5, 20 and 90 ramp-up excursions of
the present study takes values of 6.1, 1.5 and 0.34 respectively. Thus those excursions
might be classified to be ‘fast’, ‘intermediate’ and ‘slow’, respectively. This is clearly
consistent with the observed behaviour.

In the related study of Lefebvre (1987), the acceleration of the flow was large, but
the initial flow rate was high. Consequently, the ramp rate parameter γ was only
slightly in excess of unity. Thus one would only expect the deviations of turbulence
from corresponding pseudo-steady values to be moderate. This was certainly so in
the case of Lefebvre’s results.

The corresponding scaling parameter used in studies of pulsating periodic flow is
the turbulence Stokes number ωD/Uτ proposed by Ramaprian & Tu (1983). This
also is based on ideas of turbulence propagation.

As an alternative to γ a different ramp rate parameter can be defined based on the
delay associated with turbulence production, using the time scale ν/U2

τ (a time scale
associated with the inner turbulent layer). This leads to a parameter δ given by

δ =
dUb

dt

1

Ub0

ν

U2
τ0

. (16)

This has similar physical basis to the parameters ω+ and l+ used by Mao & Hanratty
(1986) and Tardu et al. (1994), respectively, for periodic flows.

As mentioned at the beginning of this section, the delay associated with the
propagation of turbulence across the flow is the most pronounced of the delays which
have been identified in the ramp-type flows under consideration here. Consequently,
the ramp rate parameter γ is the appropriate one for characterizing the present
flows. However, for ramp-up flows with very strong acceleration, in which the delay
associated with the production of turbulence becomes significant, the parameter
δ might be a more appropriate one. This point is also applicable in the case of
periodic flow. Whereas the turbulence Stokes number ωD/Uτ is suitable as a scaling
parameter for some periodic transient flows, the parameters ω+ and l+ characterize
periodic transient flows better when the frequency of the pulsation of the flow is high.

Finally, let us recall the parameters which are used for characterizing spatially
accelerating flows. The two most common ones are

k = − ν

ρU3

dp

dx
=

ν

U2

dU

dx
and ∆p =

ν

ρU3
τ

dp

dx
= − ν

U2
τ

dU

dx

(
Cf

2

)1/2

,
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where U is the free-stream velocity in the case of a boundary layer flow and the
mean velocity in the case of pipe flow. As can be seen ∆p and k are related such
that ∆p = −(Cf/2)−3/2k. Other combinations of k and Cf of the form k/Cf and

k/C
1/2
f have also been proposed for data correlation, see for example, Kline et al.

(1967), Patel & Head (1968) and Webster et al. (1996). In practice, the variation of
Cf is generally small compared with that of k so that these different parameters are
essentially similar.

For transient pipe flow, the following relation applies:

1

2

dUb

dt
= − 1

2ρ

dp

dx
+
τw

ρR
. (17)

When the acceleration of a flow is moderate or strong, the first term on the right-hand
side of (17) is much greater than the second and therefore

dUb

dt
∼= −1

ρ

dp

dx
. (18)

The parameter δ defined in (16) can then be related to ∆p and k as follows:

δ =
dUb

dt

1

Ub0

ν

U2
τ0

≈ − ν

ρU2
τ0

1

Ub0

dp

dx
= −∆p

(
f

2

)1/2

= k

(
f

2

)−1

. (19)

Thus, it can be seen that there is a connection between the ramp rate parameter δ
and the parameters which are used for characterizing spatially accelerating flows.

5. Conclusions
This fundamental study of the mean flow and turbulence fields in ramp-type

excursions of flow rate has yielded useful new information concerning transient
turbulent flow and valuable insight into certain fundamental aspects of turbulence
dynamics. The main conclusions can be summarized as follows:

(1) In fast ramp-type excursions of flows, the response of the mean flow field
initially takes the form of a slug flow variation. The acceleration (deceleration) of the
flow is then practically the same throughout the core and the boundary layer regions
and the velocity gradient becomes steeper in a very thin region near the wall. The
velocity profile distorts accordingly.

(2) A particularly interesting feature of the response of turbulence to imposed
ramp-type excursions of flow rate is the occurrence of various delays. Three have
been identified: a delay in the response of turbulence production, a delay in turbulence
energy redistribution among its three components and a delay associated with the
propagation of additional turbulence radially. As a result of these delays turbulence
intensity is attenuated in an accelerating flow and is increased in a decelerating
flow.

(3) On imposing a ramp-up flow excursion, the mean velocity field starts to respond
first. The velocity gradient increases in a region very near the wall, the extent of which
gradually grows with time. Until this region overlays the region where turbulence
production peaks, there is little increase of turbulence. We therefore see a delay in the
response of turbulence production. A time scale of ν/U2

τ is suggested for this delay.
Its value is basically determined by the initial flow condition and is not dependent
on the acceleration applied to the flow.
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(4) In the wall region, the responses of the various components of turbulence are
different. The axial component responds to an imposed transient with only a short
delay whereas the radial and circumferential components each exhibit distinct two-
stage responses with a longer delay which does not depend on the radial position.
The difference in response reflects the process of redistribution of turbulent energy
between the components through the action of pressure strain.

(5) The additional turbulent energy generated near the wall propagates outwards.
The speed of the propagation is mainly dependent on the conditions prevailing when
the additional structure was generated and can be related to Uτ. It therefore increases
with the increase of the starting Reynolds number of the transient, but is not affected
by the imposed acceleration of the flow except in the case of very fast transients. In
this case, turbulence generated later may overtake that generated earlier in the course
of propagating outwards and then a reduced delay is experienced.

(6) As a result of the time needed for propagation, the development of turbulence
at positions away from the wall region exhibits a two-stage variation. During the
early part of a transient, normal turbulent stresses respond slowly. The delay stage
ends with the arrival of additional turbulence originating from the wall region after
a period of time which is given by

√
2y/Uτ. Then the developing stage begins. The

response of each of the normal turbulent stresses in the core region is similar. This
can be explained by the fact that the time scale for the process of the redistribution
of turbulent energy between the three components is much smaller in this region than
that for the propagation of turbulence.

(7) In the wall region, the response of the turbulent shear stress is similar to that
of the radial and circumferential normal stresses. In the core region, the delay in
its response is similar to those of the normal stresses. However, unlike the normal
stresses, the shear stress remains completely unchanged during the delay.

(8) Inertia plays an important role in the momentum balance even when the
imposed excursion of flow rate is slow and little effect of the transient is seen on
the mean flow and turbulence fields. As the shear stress builds up during a ramp-up
flow excursion, the relative magnitude of the inertial term reduces, but it still remains
significant in the momentum balance even in the later stages of a transient. The
direct effect of inertia on the mean flow field is only felt in the early stages of faster
transients.

(9) The appropriate dimensionless groups for similarity and scaling in the case of
ramp-type transient turbulent flows of the kind studied here have been identified as
the initial and final Reynolds numbers Re0(=(ρUb0D)/µ) and Re1(=(ρUb1D)/µ) and
a ramp rate parameter γ(= (dUb/dt)(1/Ub0)(D/Uτ0). The latter can be expressed as
the ratio of two time scales, D/Uτ0 and Ub0/(dUb/dt). The first of these is associated
with turbulence propagation and the other with the imposed ramp. Significant delays
in the response of turbulence are to be expected during a flow excursion if this
parameter is much greater than unity. If it is very much less than unity, conditions of
pseudo-steady transient flow will prevail.

(10) An alternative parameter δ(= (dUb/dt)(1/Ub0)(ν/U
2
τ0)) is proposed for very

fast transients. This is based on the delay in the response of turbulence production
rather than the time scale for turbulence propagation.

(11) The response of turbulence in ramp-up transient flow exhibits some similarities
to that in boundary layer flow with a falling streamwise pressure gradient. Similarly,
the response of turbulence in ramp-down transient flow exhibits some similarities to
the behaviour in boundary layer flow with a rising streamwise pressure gradient.
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